Cytokine responses at high altitude: effects of exercise and antioxidants at 4300 m.
نویسندگان
چکیده
PURPOSE This study tested the hypothesis that antioxidant supplementation would attenuate plasma cytokine (IL-6, tumor necrosis factor (TNF)-alpha), and C-reactive protein (CRP) concentrations at rest and in response to exercise at 4300-m elevation. METHODS A total of 17 recreationally trained men were matched and assigned to an antioxidant (N = 9) or placebo (N = 8) group in a double-blinded fashion. At sea level (SL), energy expenditure was controlled and subjects were weight stable. Then, 3 wk before and throughout high altitude (HA), an antioxidant supplement (10,000 IU beta-carotene, 200 IU alpha-tocopherol acetate, 250 mg ascorbic acid, 50 microg selenium, 15 mg zinc) or placebo was given twice daily. At HA, energy expenditure increased approximately 750 kcal.d(-1) and energy intake decreased approximately 550 kcal.d, resulting in a caloric deficit of approximately 1200-1500 kcal.d(-1). At SL and HA day 1 (HA1) and day HA13, subjects exercised at 55% of VO2peak until they expended approximately 1500 kcal. Blood samples were taken at rest, end of exercise, and 2, 4, and 20 h after exercise. RESULTS No differences were seen between groups in plasma IL-6, CRP, or TNF-alpha at rest or in response to exercise. For both groups, plasma IL-6 concentration was significantly higher at the end of exercise, 2, 4, and 20 h after exercise at HA1 compared with SL and HA13. Plasma CRP concentration was significantly elevated 20 h postexercise for both groups on HA1 compared to SL and HA13. TNF-alpha did not differ at rest or in response to exercise. CONCLUSION Plasma IL-6 and CRP concentrations were elevated following exercise at high altitude on day 1, and antioxidant supplementation did not attenuate the rise in plasma IL-6 and CRP concentrations associated with hypoxia, exercise, and caloric deficit.
منابع مشابه
White blood cell and hormonal responses to 4300 m altitude before and after intermittent altitude exposure.
Recent studies have demonstrated that brief daily IAE (intermittent altitude exposure) was equally as effective as continuous altitude residence in inducing physiological adaptations consistent with altitude acclimatization. Although the positive benefits of IAE have been clearly defined, the potential negative consequences of IAE on health, specifically the immune system, remain undefined. The...
متن کاملChanges in ventilatory threshold at high altitude: effect of antioxidants.
PURPOSE To investigate the effects of prolonged hypoxia and antioxidant supplementation on ventilatory threshold (VT) during high-altitude (HA) exposure (4300 m). METHODS Sixteen physically fit males (25 +/- 5 yr; 77.8 +/- 8.5 kg) performed an incremental test to maximal exertion on a cycle ergometer at sea level (SL). Subjects were then matched on VO2peak, ventilatory chemosensitivity, and b...
متن کاملEffect of high altitude on human auditory brainstem responses.
The effect of hypobaric hypoxia on Brain Stem Auditory evoked potentials (BAERs) were studied. BAERs were recorded in 30 volunteers at sea level (SL) and then at high altitude (HA) of 3200 m (HA I) and 4300 m (HA II) in Eastern Himalayas and on return to sea level (RSL). The BAERs were recorded using Nicolet Compact - 4 (USA) in response to monaural auditory stimuli consisting of clicks of 100 ...
متن کاملA Numerical Simulation of Inspiratory Airflow in Human Airways during Exercise at Sea Level and at High Altitude
At high altitudes, the air pressure is much lower than it is at sea level and contains fewer oxygen molecules and less oxygen is taken in at each breath. This requires deeper and rapid breathing to get the same amount of oxygen into the blood stream compared to breathing in air at sea level. Exercises increase the oxygen demand and make breathing more difficult at high altitude. In this study, ...
متن کاملAltitude, exercise and immune function.
Little is known with regard to how acute and chronic high altitude exposure effects immune function. Hypoxia is an environmental stressor that is known to elicit alterations in both the autonomic nervous system and endocrine function. Alterations in these systems can have an immediate as well as a longer lasting impact on immune function. Studies from the summit of Pikes Peak (4300 m) have indi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medicine and science in sports and exercise
دوره 38 2 شماره
صفحات -
تاریخ انتشار 2006